การย้ายการคาดการณ์เชิงปริมาณเฉลี่ย ตามที่คุณอาจคาดเดาเรากำลังมองหาวิธีการดั้งเดิมบางอย่างที่คาดการณ์ไว้ แต่หวังว่าคำแนะนำเหล่านี้จะเป็นประโยชน์อย่างยิ่งสำหรับบางประเด็นเกี่ยวกับคอมพิวเตอร์ที่เกี่ยวข้องกับการคาดการณ์ในสเปรดชีต ในหลอดเลือดดำนี้เราจะดำเนินการต่อโดยการเริ่มต้นตั้งแต่เริ่มต้นและเริ่มทำงานกับการคาดการณ์ Moving Average การย้ายการคาดการณ์เฉลี่ย ทุกคนคุ้นเคยกับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยไม่คำนึงถึงว่าพวกเขาเชื่อหรือไม่ว่า นักศึกษาทุกคนทำแบบฝึกหัดตลอดเวลา ลองนึกถึงคะแนนการทดสอบของคุณในหลักสูตรที่คุณจะมีการทดสอบสี่ครั้งระหว่างภาคการศึกษา ให้สมมติว่าคุณมี 85 คนในการทดสอบครั้งแรกของคุณ คุณคาดหวังอะไรสำหรับคะแนนการทดสอบที่สองของคุณคุณคิดอย่างไรว่าครูของคุณจะคาดการณ์คะแนนทดสอบต่อไปคุณคิดอย่างไรว่าเพื่อนของคุณอาจคาดเดาคะแนนการทดสอบครั้งต่อไปคุณคิดว่าพ่อแม่ของคุณคาดการณ์คะแนนการทดสอบต่อไปได้ไม่ว่า การทำร้ายทั้งหมดที่คุณอาจทำกับเพื่อนและผู้ปกครองพวกเขาและครูของคุณมีแนวโน้มที่จะคาดหวังว่าคุณจะได้รับบางสิ่งบางอย่างในพื้นที่ของ 85 ที่คุณเพิ่งได้ ดีตอนนี้ให้สมมติว่าแม้จะมีการโปรโมตด้วยตัวคุณเองกับเพื่อน ๆ ของคุณคุณสามารถประเมินตัวเองและคิดว่าคุณสามารถเรียนได้น้อยกว่าสำหรับการทดสอบที่สองและเพื่อให้คุณได้รับ 73. ตอนนี้ทุกอย่างที่เกี่ยวข้องและไม่แยแสไป คาดว่าคุณจะได้รับการทดสอบครั้งที่สามมีสองแนวทางที่น่าจะเป็นไปได้สำหรับพวกเขาในการพัฒนาประมาณการโดยไม่คำนึงว่าพวกเขาจะแบ่งปันกับคุณหรือไม่ พวกเขาอาจพูดกับตัวเองว่าผู้ชายคนนี้มักจะเป่าควันเกี่ยวกับความฉลาดของเขา เขาจะได้รับอีก 73 ถ้าเขาโชคดี บางทีพ่อแม่จะพยายามสนับสนุนและพูด quotWell เพื่อให้ห่างไกลได้รับ 85 และ 73 ดังนั้นคุณควรคิดเกี่ยวกับการเกี่ยวกับ (85 73) 2 79 ฉันไม่รู้ว่าบางทีถ้าคุณไม่ปาร์ตี้ และเหวี่ยงพังพอนไปทั่วสถานที่และถ้าคุณเริ่มต้นทำมากขึ้นการศึกษาที่คุณจะได้รับคะแนนสูงขึ้นทั้งสองประมาณการเหล่านี้เป็นจริงการคาดการณ์เฉลี่ยการเคลื่อนไหว อันดับแรกใช้คะแนนล่าสุดของคุณเพื่อคาดการณ์ประสิทธิภาพในอนาคตของคุณเท่านั้น นี่เรียกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยใช้ข้อมูลระยะเวลาหนึ่ง ข้อที่สองเป็นค่าพยากรณ์เฉลี่ยเคลื่อนที่ แต่ใช้ข้อมูลสองช่วง ให้สมมติว่าคนเหล่านี้ทั้งหมด busting ในจิตใจที่ดีของคุณมีการจัดประเภทของ pissed คุณออกและคุณตัดสินใจที่จะทำดีในการทดสอบที่สามด้วยเหตุผลของคุณเองและจะนำคะแนนที่สูงขึ้นในหน้า quotalliesquot ของคุณ คุณใช้การทดสอบและคะแนนของคุณเป็นจริง 89 ทุกคนรวมทั้งตัวคุณเองเป็นที่ประทับใจ ดังนั้นตอนนี้คุณมีการทดสอบครั้งสุดท้ายของภาคการศึกษาที่กำลังจะมาถึงและตามปกติแล้วคุณรู้สึกว่าจำเป็นที่จะต้องกระตุ้นให้ทุกคนคาดการณ์เกี่ยวกับวิธีที่คุณจะทำในการทดสอบครั้งล่าสุด ดีหวังว่าคุณจะเห็นรูปแบบ ตอนนี้หวังว่าคุณจะเห็นรูปแบบนี้ คุณเชื่อว่าเป็นนกหวีดที่ถูกต้องที่สุดในขณะที่เราทำงาน ตอนนี้เรากลับไปที่ บริษัท ทำความสะอาดแห่งใหม่ของเราซึ่งเริ่มต้นโดยพี่สาวที่แยกกันอยู่ของคุณชื่อ Whistle While We Work คุณมีข้อมูลการขายในอดีตที่แสดงโดยส่วนต่อไปนี้จากสเปรดชีต ก่อนอื่นเราจะนำเสนอข้อมูลสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 3 ช่วง รายการสำหรับเซลล์ C6 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C7 ถึง C11 แจ้งให้ทราบว่าค่าเฉลี่ยย้ายผ่านข้อมูลทางประวัติศาสตร์ล่าสุด แต่ใช้เวลาสามช่วงล่าสุดสำหรับการคาดการณ์แต่ละครั้ง นอกจากนี้คุณควรสังเกตด้วยว่าเราไม่จำเป็นต้องทำการคาดการณ์ในช่วงที่ผ่านมาเพื่อพัฒนาการคาดการณ์ล่าสุดของเรา นี้แน่นอนแตกต่างจากแบบจำลองการเรียบเรียงชี้แจง Ive รวมการคาดคะเนของคำพูดราคาตลาดเนื่องจากเราจะใช้คำเหล่านี้ในหน้าเว็บถัดไปเพื่อวัดความถูกต้องในการคาดการณ์ ตอนนี้ฉันต้องการนำเสนอผลที่คล้ายคลึงกันสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 2 ช่วง รายการสำหรับเซลล์ C5 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C6 ถึง C11 แจ้งให้ทราบว่าขณะนี้มีเพียงข้อมูลล่าสุดสองชิ้นที่ใช้ล่าสุดในการคาดการณ์เท่านั้น อีกครั้งฉันได้รวมการคาดคะเน quotpost เพื่อวัตถุประสงค์ในการอธิบายและเพื่อใช้ในภายหลังในการตรวจสอบการคาดการณ์ บางสิ่งบางอย่างอื่นที่มีความสำคัญที่จะแจ้งให้ทราบล่วงหน้า สำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ m-period เฉพาะค่าข้อมูลล่าสุดของ m ที่ใช้ในการคาดคะเนเท่านั้น ไม่มีอะไรอื่นที่จำเป็น สำหรับการคาดการณ์ค่าเฉลี่ยของระยะเวลา m-period เมื่อทำนายการคาดการณ์ของ quotpast ให้สังเกตว่าการทำนายครั้งแรกเกิดขึ้นในช่วง m 1 ทั้งสองประเด็นนี้จะมีความสำคัญมากเมื่อเราพัฒนาโค้ดของเรา การพัฒนาฟังก์ชัน Average Moving Average ตอนนี้เราจำเป็นต้องพัฒนาโค้ดสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่สามารถใช้ความยืดหยุ่นได้มากขึ้น รหัสดังต่อไปนี้ โปรดทราบว่าปัจจัยการผลิตเป็นจำนวนงวดที่คุณต้องการใช้ในการคาดการณ์และอาร์เรย์ของค่าทางประวัติศาสตร์ คุณสามารถเก็บไว้ในสมุดงานที่คุณต้องการ Function MovingAverage (Historical, NumberOfPeriods) ในฐานะ Single Declaring และ Initializing ตัวแปร Dim Item As Variant Dim Counter เป็นจำนวนเต็ม Integer Dim Single Dim HistoricalSize As Integer ตัวแปรที่ Initializing ตัวแปร Counter 1 สะสม 0 การกำหนดขนาดของอาร์เรย์ Historical HistoricalSize Historical. Count สำหรับ Counter 1 ถึง NumberOfPeriods สะสมจำนวนที่เหมาะสมของค่าที่สังเกตก่อนหน้านี้ล่าสุด Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage การสะสม NumberOfPeriods รหัสจะอธิบายในคลาส คุณต้องการวางตำแหน่งฟังก์ชันในสเปรดชีตเพื่อให้ผลของการคำนวณปรากฏขึ้นที่ควรทำดังนี้วิธีที่ง่ายที่สุดคือใช้เวลาเฉลี่ยในเดือนมกราคมถึงเดือนมีนาคมและใช้ข้อมูลดังกล่าวในการประมาณการยอดขายเมษายน8217: (129 134 122) 3 128.333 ดังนั้นจากยอดขายในเดือนมกราคมถึงเดือนมีนาคมคุณคาดการณ์ว่ายอดขายในเดือนเมษายนจะเท่ากับ 128,333 เมื่อยอดขายที่เกิดขึ้นในเดือนเมษายน 198217 มาแล้วคุณจะคำนวณการคาดการณ์สำหรับเดือนพฤษภาคมโดยใช้กุมภาพันธ์ถึงเดือนเมษายน คุณต้องสอดคล้องกับจำนวนงวดที่คุณใช้ในการย้ายการคาดการณ์โดยเฉลี่ย จำนวนรอบระยะเวลาที่คุณใช้ในการคาดการณ์โดยเฉลี่ยที่เคลื่อนที่ของคุณโดยพลการคุณสามารถใช้เพียงสองช่วงเวลาหรือห้าหรือหกช่วงเวลาที่คุณต้องการสร้างการคาดการณ์ของคุณ วิธีการข้างต้นเป็นค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย บางครั้งยอดขายเดือนที่ผ่านมา 823 อาจเป็นแรงผลักดันที่แข็งแกร่งในยอดขายเดือนที่ผ่านมา 82 ปีดังนั้นคุณจึงต้องการให้น้ำหนักที่ใกล้ถึงเดือนนี้มากขึ้นในรูปแบบการคาดการณ์ของคุณ นี่คือค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก และเช่นเดียวกับจำนวนรอบระยะเวลาน้ำหนักที่คุณกำหนดจะหมดสิทธิ์โดยพลการ Let8217s กล่าวว่าคุณต้องการให้ยอดขายเดือนมีนาคม 8217s 50 น้ำหนักกุมภาพันธ์ 8217s 30 น้ำหนักและ January8217s 20 แล้วคาดการณ์ของคุณสำหรับเมษายนจะ 127,000 (122.50) (134.30) (129.20) 127 ข้อ จำกัด ของค่าเฉลี่ยเคลื่อนที่วิธีการคำนวณค่าเฉลี่ยเคลื่อนที่คำนวณเป็น 8220smoothing8221 เทคนิคการคาดการณ์ เนื่องจากคุณใช้เวลาโดยเฉลี่ยเมื่อเวลาผ่านไปคุณจึงอ่อนตัว (หรือทำให้เรียบ) ผลกระทบจากการเกิดขึ้นที่ไม่สม่ำเสมอภายในข้อมูล เป็นผลให้ผลกระทบของฤดูกาลวงจรธุรกิจและเหตุการณ์สุ่มอื่น ๆ สามารถเพิ่มข้อผิดพลาดในการคาดการณ์ได้อย่างมาก ดูข้อมูลทั้งหมดของปีปี8217และเปรียบเทียบค่าเฉลี่ยเคลื่อนที่ 3 ช่วงและค่าเฉลี่ยเคลื่อนที่ 5 ช่วงคือสังเกตว่าในกรณีนี้ที่ไม่ได้สร้างการคาดการณ์ แต่ให้เน้นที่ค่าเฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่เป็นเวลา 3 เดือนแรกของเดือนกุมภาพันธ์และเฉลี่ยเดือนมกราคมกุมภาพันธ์และมีนาคมโดยเฉลี่ย ฉันยังทำเหมือนกันสำหรับค่าเฉลี่ย 5 เดือน ตอนนี้ดูกราฟต่อไปนี้: คุณเห็นอะไรบ้างไม่ใช่ชุดค่าเฉลี่ยเคลื่อนที่ 3 เดือนที่นุ่มนวลกว่าชุดการขายที่เกิดขึ้นจริงและค่าเฉลี่ยเคลื่อนที่ 5 เดือนของ It8217s ยังราบรื่นมากเพียงใด ดังนั้นช่วงเวลาที่คุณใช้ในค่าเฉลี่ยเคลื่อนที่ของคุณยิ่งเพิ่มมากขึ้น ดังนั้นสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่แบบเรียบอาจไม่ใช่วิธีที่ถูกต้องที่สุด การย้ายวิธีเฉลี่ยจะเป็นประโยชน์อย่างมากเมื่อคุณพยายามดึงส่วนประกอบตามฤดูกาลไม่สม่ำเสมอและวัฏจักรของชุดข้อมูลเวลาสำหรับวิธีการคาดการณ์ขั้นสูงเช่นการถดถอยและ ARIMA และการใช้ค่าเฉลี่ยเคลื่อนที่ในการสลายตัวชุดข้อมูลเวลาจะได้รับการแก้ไขในภายหลัง ในชุด การกำหนดความถูกต้องของโมเดลเฉลี่ยเคลื่อนที่โดยทั่วไปคุณต้องการวิธีการคาดการณ์ที่มีข้อผิดพลาดน้อยที่สุดระหว่างผลลัพธ์จริงและที่คาดการณ์ไว้ หนึ่งในมาตรการที่ใช้บ่อยที่สุดในการพยากรณ์ความถูกต้องคือค่า Mean Absolute Deviation (MAD) ในวิธีนี้สำหรับแต่ละช่วงเวลาในชุดข้อมูลเวลาที่คุณสร้างการคาดการณ์คุณจะใช้ค่าสัมบูรณ์ของความแตกต่างระหว่างค่าที่แท้จริงและที่คาดการณ์ไว้ของ period8217s (ส่วนเบี่ยงเบน) จากนั้นคุณจะเฉลี่ยค่าเบี่ยงเบนสัมบูรณ์เหล่านี้และคุณจะได้รับการวัด MAD MAD อาจเป็นประโยชน์ในการตัดสินใจเกี่ยวกับจำนวนงวดที่คุณเฉลี่ยและหรือจำนวนน้ำหนักที่คุณวางไว้ในแต่ละช่วงเวลา โดยทั่วไปคุณเลือกหนึ่งที่มีผลใน MAD ต่ำสุด Here8217 เป็นตัวอย่างของการคำนวณ MAD: MAD เป็นค่าเฉลี่ยของ 8, 1 และ 3 ค่าเฉลี่ยเคลื่อนที่: Recap เมื่อใช้ค่าเฉลี่ยเคลื่อนที่สำหรับการคาดการณ์โปรดจำไว้ว่าค่าเฉลี่ยที่เคลื่อนที่ได้ง่ายหรือมีการถ่วงน้ำหนักจำนวนรอบที่คุณใช้สำหรับ ค่าเฉลี่ยและน้ำหนักใด ๆ ที่คุณกำหนดให้กับแต่ละอย่างเคร่งครัดโดยพลการย้ายค่าเฉลี่ยเรียบรูปแบบที่ไม่สม่ำเสมอในข้อมูลชุดเวลาที่มีขนาดใหญ่จำนวนรอบระยะเวลาที่ใช้สำหรับแต่ละจุดข้อมูลมากขึ้นผลเรียบเนืองเนื่องจากการคาดการณ์ยอดขายเดือนถัดไป 8282s ตาม ยอดขายล่าสุดของเดือนที่ผ่านมาไม่กี่เดือนอาจส่งผลให้เกิดการเบี่ยงเบนขนาดใหญ่เนื่องจากรูปแบบตามฤดูกาลวัฏจักรและรูปแบบที่ไม่สม่ำเสมอในข้อมูลและความสามารถในการปรับให้เรียบของวิธีเฉลี่ยที่เคลื่อนที่จะเป็นประโยชน์ในการสลายชุดข้อมูลเวลาสำหรับวิธีการคาดการณ์ขั้นสูงขึ้น สัปดาห์ถัดไป: การจัดแจงแบบสม่ำเสมอในสัปดาห์หน้าการคาดการณ์ในวันศุกร์ที่ 1982 เราจะหารือเกี่ยวกับวิธีการทำให้เรียบแบบเสี้ยวและคุณจะเห็นว่าพวกเขาสามารถไกลกว่าวิธีการพยากรณ์การเคลื่อนไหวเฉลี่ย ยังคง don8217t รู้ว่าทำไมโพสต์วันศุกร์พยากรณ์ของเราจะปรากฏในวันพฤหัสบดีที่ค้นหาที่: tinyurl26cm6ma เช่นนี้: โพสต์นำทางปล่อยให้ตอบยกเลิกการตอบฉันมี 2 คำถาม: 1) คุณสามารถใช้วิธี MA centered เพื่อคาดการณ์หรือเพียงเพื่อลบ seasonality 2) เมื่อ คุณใช้ t (t-1t-2t-k) ที่ง่ายในการคาดการณ์ระยะหนึ่งล่วงหน้าคุณสามารถคาดการณ์ได้มากกว่า 1 รอบระยะเวลาข้างหน้าที่ฉันเดาแล้วการคาดการณ์ของคุณจะเป็นหนึ่งในจุดให้อาหารในถัดไป ขอบคุณ รักข้อมูลและคำอธิบายของคุณ I8217m ดีใจที่คุณชอบบล็อก I8217m แน่ใจว่านักวิเคราะห์หลายคนใช้วิธี MA ที่เน้นการคาดการณ์ แต่ส่วนตัวแล้วฉันจะไม่เนื่องจากวิธีการดังกล่าวทำให้สูญเสียการสังเกตที่ปลายทั้งสอง นี้จริงแล้วความสัมพันธ์ในคำถามที่สองของคุณ โดยทั่วไปแล้ว MA แบบธรรมดาใช้ในการคาดการณ์ล่วงหน้าเพียงระยะเวลาเดียว แต่นักวิเคราะห์หลายคน 8211 และฉันก็อาจใช้การคาดการณ์ล่วงหน้าหนึ่งรอบเป็นหนึ่งในปัจจัยการผลิตในช่วงที่สองข้างหน้า It8217s สำคัญที่ต้องจำไว้ว่ายิ่งไปกว่านั้นในอนาคตที่คุณพยายามคาดการณ์ความเสี่ยงของการคาดการณ์ความผิดพลาดมากขึ้น นี่คือเหตุผลที่ผมไม่แนะนำให้ Center for MA ทำนาย 8211 การสูญเสียข้อสังเกตในตอนท้ายหมายถึงต้องพึ่งพาการคาดการณ์สำหรับการสังเกตที่หายไปรวมถึงระยะเวลาข้างหน้าดังนั้นจึงมีโอกาสเกิดข้อผิดพลาดในการคาดการณ์มากขึ้น ผู้อ่าน: you8217 เชิญชวนให้ชั่งน้ำหนักในเรื่องนี้ คุณมีความคิดเห็นหรือคำแนะนำเกี่ยวกับ Brian นี้ขอบคุณสำหรับความคิดเห็นและคำชมเชยของคุณในบล็อกความคิดริเริ่มที่ดีและคำอธิบายที่ดี It8217s เป็นประโยชน์จริงๆ ฉันคาดการณ์แผงวงจรพิมพ์ที่กำหนดเองสำหรับลูกค้าที่ไม่ให้การคาดการณ์ใด ๆ ฉันใช้ค่าเฉลี่ยเคลื่อนที่ แต่ไม่ค่อยถูกต้องเนื่องจากอุตสาหกรรมสามารถขึ้นและลงได้ เราเห็นต่อกลางฤดูร้อนสิ้นปีที่ pcb8217s ส่งขึ้น จากนั้นเราจะเห็นจุดเริ่มต้นของปีช้าลง ฉันจะถูกต้องมากขึ้นด้วยข้อมูลของฉัน Katrina จากสิ่งที่คุณบอกฉันปรากฏการขายแผงวงจรพิมพ์ของคุณมีองค์ประกอบตามฤดูกาล ฉันจะกล่าวถึงฤดูกาลในบางส่วนของโพสต์วันศุกร์พยากรณ์อื่น ๆ อีกวิธีหนึ่งที่คุณสามารถใช้ซึ่งเป็นเรื่องที่ง่ายมากคืออัลกอริทึม Holt-Winters ซึ่งคำนึงถึงฤดูกาล คุณสามารถหาคำอธิบายได้ที่นี่ อย่าลืมกำหนดว่ารูปแบบตามฤดูกาลของคุณเป็นแบบทวีคูณหรือแบบเพิ่มหรือไม่เนื่องจากอัลกอริทึมจะแตกต่างกันเล็กน้อยสำหรับแต่ละรูปแบบ หากคุณวางแผนข้อมูลรายเดือนของคุณจากไม่กี่ปีและพบว่าการเปลี่ยนแปลงตามฤดูกาลในช่วงเวลาเดียวกันของปีดูเหมือนจะเป็นปีที่คงที่ต่อปีจากนั้นฤดูกาลจะเพิ่มขึ้นหากการเปลี่ยนแปลงตามฤดูกาลในช่วงเวลาดูเหมือนจะเพิ่มขึ้นแล้วฤดูกาลคือ คูณ ชุดเวลาตามฤดูกาลส่วนใหญ่จะเป็นจำนวนทวีคูณ หากมีข้อสงสัยให้สมมติ multiplicative สวัสดีสวัสดี, ระหว่างวิธีการดังกล่าว:. พยากรณ์ Nave การอัพเดตค่าเฉลี่ย ค่าเฉลี่ยเคลื่อนที่ของความยาว k ค่าเฉลี่ยถ่วงน้ำหนักโดยเฉลี่ยของความยาว k หรือ Exponential Smoothing รูปแบบการอัปเดตใดที่คุณแนะนำให้ฉันใช้เพื่อคาดการณ์ข้อมูลสำหรับความคิดของฉันฉันคิดถึง Moving Average แต่ขึ้นอยู่กับปริมาณและคุณภาพของข้อมูลที่คุณมีและเส้นขอบฟ้าของการคาดการณ์ของคุณ (ระยะยาวระยะกลางหรือระยะสั้น) บทที่สี่ (MC และ TF) อะไรบ้าง สองตัวเลขที่มีอยู่ในรายงานประจำวันให้กับซีอีโอของ Walt Disney Parks amp Resorts เกี่ยวกับสวนสาธารณะออร์แลนโดหก a. การเข้าร่วมประชุมคาดการณ์ในปีที่ผ่านมาและการเข้าร่วมประชุมวันอังคาร y การเข้าร่วมประชุมจริงในวันนี้และการเข้าร่วมประชุมที่คาดการณ์ไว้ในปัจจุบัน c. การเข้าร่วมงานที่คาดการณ์ไว้เมื่อวานและการเข้าร่วมงานที่คาดการณ์ไว้ในปัจจุบัน d. การเข้าเรียนจริงในปีที่ผ่านมาและการเข้าเรียนจริงในปีที่ผ่านมา e. การคาดการณ์การเข้าร่วมที่คาดการณ์ในรอบปีที่ผ่านมาและข้อผิดพลาดในการคาดการณ์รายวันโดยเฉลี่ยของปีถึงปีคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 6 เดือนจะดีกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 3 เดือนหากความต้องการ a. ค่อนข้างคงที่ b. ได้รับการเปลี่ยนแปลงเนื่องจากความพยายามในการส่งเสริมล่าสุด c. มีแนวโน้มลดลง d. เป็นไปตามฤดูกาลที่ซ้ำตัวเองปีละสองครั้ง e. ตามแนวโน้มที่สูงขึ้นสำหรับความต้องการผลิตภัณฑ์หนึ่ง ๆ แนวโน้มของสมการของอนุกรมเวลาคือ 53 - 4 X. เครื่องหมายลบบนความชันของสมการ a. เป็นไปไม่ได้ทางคณิตศาสตร์ b. เป็นข้อบ่งชี้ว่าการคาดการณ์มีความลำเอียงโดยมีค่าพยากรณ์ต่ำกว่าค่าที่แท้จริง c. เป็นข้อบ่งชี้ว่าความต้องการสินค้าลดลง d. หมายความว่าค่าสัมประสิทธิ์ของการกำหนดจะเป็นลบ e. แสดงว่า RSFE จะเป็นค่าลบซึ่งข้อใดต่อไปนี้เป็นจริงเกี่ยวกับค่าคงที่ทั้งสองแบบของรูปแบบพยากรณ์รวมทั้งแนวโน้ม (FIT) a. หนึ่งคงเป็นบวกในขณะที่อื่น ๆ เป็นลบ ข พวกเขาเรียกว่า MAD และ RSFE ค Alpha มีขนาดเล็กกว่าเบต้าเสมอ d หนึ่งคงที่ราบรื่นถดถอยตัดในขณะที่อื่น ๆ คล่องตัวลาดถดถอย อี ค่าของพวกเขาจะถูกกำหนดโดยอิสระ ความต้องการผลิตภัณฑ์บางอย่างคาดว่าจะอยู่ที่ 800 หน่วยต่อเดือนโดยเฉลี่ยแล้วตลอด 12 เดือนของปี ผลิตภัณฑ์มีรูปแบบตามฤดูกาลซึ่งดัชนีเดือนมกราคมของเดือนมกราคมเท่ากับ 1.25 การคาดการณ์ยอดขายที่ปรับฤดูกาลตามฤดูกาลในเดือนมกราคมคืออะไร 640 หน่วย b. 798.75 หน่วย c. 800 หน่วย d. 1000 หน่วย e. ไม่สามารถคำนวณได้ด้วยข้อมูลที่ระบุดัชนีตามฤดูกาลสำหรับชุดข้อมูลรายเดือนกำลังจะถูกคำนวณบนพื้นฐานของการสะสมข้อมูลสามปี ค่าเฉลี่ยของเดือนกรกฎาคมที่ผ่านมามีค่าเท่ากับ 110, 150 และ 130 โดยค่าเฉลี่ยของทุกเดือนคือ 190 จุดดัชนีฤดูกาลโดยประมาณสำหรับเดือนกรกฎาคมคือ a. 0.487 ข. 0.684 c. 1.462 d. 2.053 จ. ไม่สามารถคำนวณได้จากข้อมูลที่ระบุไว้ตัวอย่างการคำนวณพยากรณ์อากาศ A.1 วิธีการคำนวณพยากรณ์อากาศมีอยู่ 12 วิธีในการคำนวณการคาดการณ์ วิธีการเหล่านี้ส่วนใหญ่มีไว้สำหรับการควบคุมผู้ใช้ที่ จำกัด ตัวอย่างเช่นอาจมีการระบุน้ำหนักที่วางไว้ในข้อมูลทางประวัติศาสตร์ล่าสุดหรือช่วงวันที่ของข้อมูลประวัติที่ใช้ในการคำนวณ ตัวอย่างต่อไปนี้แสดงขั้นตอนการคำนวณสำหรับแต่ละวิธีการคาดการณ์ที่พร้อมใช้งานโดยให้ข้อมูลประวัติที่เหมือนกัน ตัวอย่างต่อไปนี้ใช้ข้อมูลการขายแบบเดียวกันสำหรับปีพ. ศ. 2547 และ 2548 เพื่อสร้างยอดขายในปี 2549 นอกเหนือจากการคาดการณ์แล้วตัวอย่างแต่ละตัวอย่างจะมีการคาดการณ์ปีพ. ศ. 2548 สำหรับระยะเวลาการระงับสามเดือน (ตัวเลือกการประมวลผล 19 3) ซึ่งใช้แล้วสำหรับเปอร์เซ็นต์ความถูกต้องและการคำนวณค่าเบี่ยงเบนสัมบูรณ์ที่มีค่าเฉลี่ย (ยอดขายจริงเทียบกับการคาดการณ์แบบจำลอง) A.2 เกณฑ์การประเมินประสิทธิภาพพยากรณ์พยากรณ์ขึ้นอยู่กับตัวเลือกการประมวลผลของคุณและแนวโน้มและรูปแบบที่มีอยู่ในข้อมูลการขายวิธีการคาดการณ์บางอย่างจะทำงานได้ดีกว่าข้อมูลอื่นที่มีอยู่ในอดีต วิธีการพยากรณ์อากาศที่เหมาะสมสำหรับผลิตภัณฑ์หนึ่งอาจไม่เหมาะสมสำหรับผลิตภัณฑ์อื่น นอกจากนี้ยังไม่น่าเป็นไปได้ว่าวิธีการคาดการณ์ที่ให้ผลลัพธ์ที่ดีในขั้นตอนหนึ่งของวงจรชีวิตของผลิตภัณฑ์จะยังคงเหมาะสมตลอดทั้งวงจรชีวิต คุณสามารถเลือกระหว่างสองวิธีเพื่อประเมินประสิทธิภาพปัจจุบันของวิธีการคาดการณ์ ค่าเบี่ยงเบนสัมบูรณ์ (MAD) และเปอร์เซ็นต์ความถูกต้อง (POA) ทั้งสองวิธีการประเมินผลการปฏิบัติงานเหล่านี้ต้องใช้ข้อมูลการขายในอดีตสำหรับผู้ใช้ที่ระบุไว้ในช่วงเวลา ระยะเวลานี้เรียกว่าระยะเวลา holdout หรือช่วงเวลาที่เหมาะสม (PBF) ข้อมูลในช่วงนี้ใช้เป็นพื้นฐานสำหรับการแนะนำวิธีการคาดการณ์ที่จะใช้ในการทำประมาณการครั้งต่อไป คำแนะนำนี้มีให้เฉพาะสำหรับแต่ละผลิตภัณฑ์และอาจมีการเปลี่ยนแปลงจากรุ่นคาดการณ์หนึ่งไปเป็นรุ่นต่อ ๆ ไป ทั้งสองวิธีการประเมินผลการคาดการณ์จะแสดงในหน้าเว็บตามตัวอย่างของสิบสองวิธีการคาดการณ์ A.3 วิธีที่ 1 - เปอร์เซ็นต์ที่ระบุในปีที่ผ่านมาวิธีนี้จะคูณข้อมูลการขายจากปีที่แล้วโดยผู้ใช้ที่ระบุเช่น 1.10 สำหรับการเพิ่มขึ้น 10 ครั้งหรือ 0.97 สำหรับการลดลง 3 ครั้ง ประวัติการขายที่ต้องการ: หนึ่งปีสำหรับการคำนวณการคาดการณ์บวกจำนวนผู้ใช้ที่ระบุช่วงเวลาสำหรับการประเมินประสิทธิภาพการคาดการณ์ (ตัวเลือกการประมวลผล 19) A.4.1 ช่วงการคาดการณ์ของประมาณการประวัติการขายเพื่อใช้ในการคำนวณปัจจัยการเติบโต (ตัวเลือกการประมวลผล 2a) 3 ในตัวอย่างนี้ รวมสามเดือนสุดท้ายของปี 2548: 114 119 137 370 รวม 3 เดือนของปีก่อน 123 139 133 395 คำนวณตามปัจจัย 370395 0.9367 คำนวณการคาดการณ์ยอดขายในเดือนมกราคม 2548 128 0.9367 119.8036 หรือประมาณ 120 กุมภาพันธ์ 2548 ยอดขาย 117 0.9367 109.5939 หรือประมาณ 110 มีนาคม 2548 ยอดขาย 115 0.9367 107.7205 หรือประมาณ 108 A.4.2 การคำนวณพยากรณ์แบบจำลองรวม 3 เดือนของปี 2548 ก่อนระยะเวลาการระงับ (กรกฎาคมสิงหาคมกันยายน): 129 140 131 400 รวมสามเดือนสำหรับ ปีที่แล้ว: 141 128 118 387 ค่าที่คำนวณได้ 400387 1.033591731 คำนวณการคาดการณ์แบบจำลอง: ตุลาคม 2547 ยอดขาย 123 1.033591731 127.13178 พฤศจิกายน 2547 ยอดขาย 139 1.033591731 143.66925 ธันวาคม 2547 ยอดขาย 133 1.033591731 137.4677 A.4.3 เปอร์เซ็นต์ของการคำนวณความถูกต้อง POA (127.13178 143.66925 137.4677) (114 119 137) 100 408.26873 370 100 110.3429 A.4.4 การคำนวณค่าเบี่ยงเบนสัมบูรณ์เที่ยงตรงหมายถึง MAD (127.13178 - 114 143.66925 - 119 137.4677 - 137) 3 (13.13178 24.66925 0.4677) 3 12.75624 A.5 วิธีที่ 3 - ปกอนถึงปนี้วิธีการนี้ทําการคัดลอกขอมูลการขายจากปกอนไปเปนปหนา ประวัติการขายที่ต้องการ: หนึ่งปีสำหรับการคำนวณการคาดการณ์บวกจำนวนของช่วงเวลาที่ระบุไว้สำหรับการประเมินประสิทธิภาพการคาดการณ์ (ตัวเลือกการประมวลผล 19) A.6.1 การพยากรณ์การคาดการณ์จำนวนรอบที่จะรวมอยู่ในค่าเฉลี่ย (ตัวเลือกการประมวลผล 4a) 3 ในตัวอย่างนี้สำหรับแต่ละเดือนของการคาดการณ์โดยเฉลี่ยแล้วข้อมูลสามเดือนก่อนหน้า ประมาณการมกราคม: 114 119 137 370, 370 3 123.333 หรือ 123 การคาดการณ์ในเดือนกุมภาพันธ์: 119 137 123 379, 379 3 126.333 หรือ 126 รายงานประจำเดือนมีนาคม: 137 123 126 379, 386 3 128.667 หรือ 129 A.6.2 การคำนวณพยากรณ์จำลองคำนวณยอดขายในเดือนตุลาคม 2548 (129 (131,333 128.3333 121.3333) (114 119 137) 100 103.513 A.6.4 Mean Absolute (ค่าสัมบูรณ์ที่คำนวณได้) การคำนวณค่าเบี่ยงเบน MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14.7777 A.7 วิธีที่ 5 - การประมาณค่าเชิงเส้นเส้นประมาณเชิงเส้นคำนวณแนวโน้มตามจุดข้อมูลการขายสองจุด จุดที่สองกำหนดเส้นแนวโน้มตรงที่คาดการณ์ไว้ในอนาคต ใช้วิธีนี้ด้วยความระมัดระวังเนื่องจากการคาดการณ์ในระยะยาวจะใช้ประโยชน์จากการเปลี่ยนแปลงเพียงเล็กน้อยในสองจุดข้อมูล ประวัติการขายที่ต้องการ: จำนวนงวดที่จะรวมไว้ในการถดถอย (ตัวเลือกการประมวลผล 5a) บวก 1 บวกจำนวนช่วงเวลาสำหรับการประเมินประสิทธิภาพการคาดการณ์ (ตัวเลือกการประมวลผล 19) (ตัวประมวลผลการประมวลผล 6a) 3 ในตัวอย่างนี้สำหรับแต่ละเดือนของการคาดการณ์เพิ่มการเพิ่มหรือลดลงในช่วงเวลาที่ระบุก่อนช่วงเวลา holdout รอบระยะเวลาก่อนหน้า ค่าเฉลี่ยของช่วง 3 เดือนก่อนหน้า (114 119 137) 3 123.3333 สรุปช่วง 3 เดือนที่ผ่านมาโดยพิจารณาน้ำหนัก (114 1) (119 2) (137 3) 763 ความแตกต่างระหว่างค่า 763 - 123.3333 (1 2 3) 23 อัตราส่วน ( 12 22 32) - 2 3 14 - 12 2 มูลคา 1 ความแตกตางระหวางการทํางาน 232 11.5 มูลคา 2 คาเฉลี่ย - สัปดาห 123.3333 - 11.5 2 100.3333 ประมาณการ (1 n) คา 1 คา 2 4 11.5 100.3333 146.333 หรือ 146 พยากรณ์ 5 11.5 100.3333 157.8333 หรือ 158 พยากรณ์อากาศ 6 11.5 100.3333 169.3333 หรือ 169 A.8.2 การคำนวณพยากรณ์จำลองคำนวณยอดขายในเดือนตุลาคม 2547: เฉลี่ย 3 เดือนก่อนหน้า (129 140 131) 3 133.3333 สรุปช่วง 3 เดือนที่ผ่านมาโดยพิจารณาน้ำหนัก (129 1) (140 2) (131 3) 802 ความแตกต่างระหว่าง (1 22) - 2 3 14 - 12 2 Value1 ความแตกต่างRatio 22 1 Value2 Average - value1 ratio 133.3333 - 1 2 131.3333 Forecast (1 n) value1 value2 4 1 131.3333 135.3333 November 2004 ขาย ค่าเฉลี่ยของช่วง 3 เดือนก่อนหน้า (140 131 114) 3 128.3333 สรุปช่วง 3 เดือนที่ผ่านมาโดยพิจารณาน้ำหนัก (140 1) (131 2) (114 3) 744 ความแตกต่างระหว่างค่า 744 - 128.3333 (1 2 3) -25.9999 มูลค่า 1 (131 114 119) 3 121.3333 สรุปผลการดำเนินงานในช่วง 3 เดือนที่ผ่านมาโดยพิจารณาน้ำหนัก (3) ค่าใช้จ่ายในการดำเนินงาน 131 1) (114 2) (119 3) 716 ความแตกตางระหวางคา 716 - 121.3333 (1 2 3) -11.9999 คาที่ 1 ความแตกตางระหวาง -11.99992 -5.9999 มูลคา 2 คาเฉลี่ย 121.3333 - (-5.9999) 2 133.3333 พยากรณ์ 4 (-5.9999 ) 133.3333 109.3333 A.8.3 ร้อยละของการคำนวณความถูกต้อง POA (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 การคำนวณค่าเบี่ยงเบนสัมบูรณ์ที่มีค่าเฉลี่ย MAD (135.33 - 114 102.33 - 119 109.33 - 137) 3 21.88 A.9 วิธีที่ 7 - ซีคอน d การประมาณค่าระดับการถดถอยเชิงเส้นกำหนดค่าสำหรับ a และ b ในสูตรการคาดการณ์ Y a bX โดยมีวัตถุประสงค์เพื่อให้ตรงกับข้อมูลประวัติการขาย การประมาณปริญญาที่สองคล้ายกัน อย่างไรก็ตามวิธีนี้กำหนดค่าสำหรับ a, b และ c ในสูตรการคาดการณ์ Y a bX cX2 โดยมีวัตถุประสงค์เพื่อปรับเส้นโค้งให้สอดคล้องกับข้อมูลประวัติการขาย วิธีนี้อาจเป็นประโยชน์เมื่อผลิตภัณฑ์อยู่ในช่วงการเปลี่ยนผ่านระหว่างขั้นตอนของวงจรชีวิต ตัวอย่างเช่นเมื่อผลิตภัณฑ์ใหม่ย้ายจากช่วงแนะนำสู่ช่วงการเติบโตแนวโน้มการขายอาจเพิ่มขึ้น เนื่องจากลำดับที่สองการคาดการณ์สามารถหาอินฟินิตี้ได้อย่างรวดเร็วหรือลดลงเป็นศูนย์ (ขึ้นอยู่กับว่าสัมประสิทธิ์ c เป็นบวกหรือลบ) ดังนั้นวิธีนี้มีประโยชน์ในระยะสั้นเท่านั้น ข้อกำหนดการคาดการณ์: สูตรจะพบ a, b และ c ให้พอดีกับเส้นโค้งไปถึงสามจุด คุณระบุ n ในตัวเลือกการประมวลผล 7a จำนวนช่วงเวลาของข้อมูลที่จะสะสมลงในแต่ละจุดสามจุด ในตัวอย่างนี้ n 3 ดังนั้นข้อมูลการขายจริงสำหรับเดือนเมษายนถึงมิถุนายนจะรวมกันเป็นจุดแรก Q1 ตั้งแต่เดือนกรกฎาคมถึงเดือนกันยายนรวมกันเพื่อสร้างไตรมาสที่ 2 และเดือนตุลาคมถึงเดือนธันวาคมรวมเป็นไตรมาสที่ 3 เส้นโค้งจะพอดีกับสามค่า Q1, Q2 และ Q3 ประวัติการขายที่ต้องการ: 3 n งวดสำหรับการคำนวณการคาดการณ์บวกจำนวนช่วงเวลาที่จำเป็นสำหรับการประเมินผลการพยากรณ์ (PBF) จำนวนงวดที่จะรวม (ตัวเลือกการประมวลผล 7a) 3 ในตัวอย่างนี้ใช้เดือนที่แล้ว (3 n) เดือนในช่วงสามเดือน: Q1 (เม. ย. - มิ.ย. ) 125 122 137 384 Q2 (ก. ค. - ก. ย. ) 129 140 131 400 Q3 ต. ค. - ธ. ค. ) 114 119 137 370 ขั้นตอนต่อไปคือการคำนวณค่าสัมประสิทธิ์ทั้งสามแบบ a, b และ c เพื่อใช้ในสูตรคาดการณ์ Y a bX cX2 (1) Q1 a bX cX2 (โดยที่ X 1) abc (2) Q2 bx cX2 (where X 2) a 2b 4c (3) Q3 a bX cX2 (where X 3) a 3b 9c แก้สมการทั้งสามสมการหา b, a และ c: ลบสมการ (1) จากสมการ (2) (3) Q3 a 3 (Q2-Q1) - 3c c ท้ายแทนสมการเหล่านี้สำหรับ a และ b ให้เป็นสมการ (2) - (1) Q2 - Q1 b 3c (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 วิธีประมาณค่าที่สองคำนวณ a, b และ c ดังนี้ Q3 - 3 (Q2 - Q1) 370 - 3 (400 - 384) 322 c (Q3 - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3c (400 - 384) - (3 - 23) 85 Y a bX cX2 322 85X (-23) X2 มกราคมถึงมีนาคมคาดการณ์ (X4): (322 340 - 368) 3 2943 98 ในช่วงเดือนเมษายนถึงมิถุนายน (X5): (322 425 - 575) 3 57.333 หรือ 57 ต่องวดตั้งแต่เดือนกรกฎาคมถึงกันยายน (X6): (322 510 - 828) 3 1.33 หรือ 1 ต่องวดตั้งแต่เดือนตุลาคมถึงธันวาคม (X7) (322 595 - 11273 -70 A.9.2 การคำนวณพยากรณ์แบบจำลองเดือนตุลาคมพฤศจิกายนและธันวาคม 2547 ยอดขาย: Q1 (ม. ค. - มี.ค. ) 360 Q2 (เม. ย. - มิ.ย. ) 384 Q3 (ก. ค. - ก. ย. ) 400 a 400 - 3 (384 - 360) 328 c (400 - 384) (360 - 384) 2 -4 ข (384 - 360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 เปอร์เซ็นต์การคำนวณความถูกต้อง POA (136 136 136) (114 119 137) 100 110.27 A.9.4 การคำนวณค่าเบี่ยงเบนสัมบูรณ์ที่คำนวณได้ MAD (136 - 114 136 - 119 136 - 137) 3 13.33 A.10 วิธีที่ 8 - วิธีที่ยืดหยุ่นวิธีการที่ยืดหยุ่น (เปอร์เซ็นต์มากกว่า n เดือนก่อน) คล้ายกับวิธีการ 1 ร้อยละเมื่อปีที่แล้ว ทั้งสองวิธีคูณข้อมูลการขายจากช่วงเวลาก่อนหน้าโดยผู้ใช้ที่ระบุแล้วจะคาดการณ์ผลลัพธ์ในอนาคต ในวิธีคิดอัตราส่วนต่อปีที่ผ่านมาการประมาณการจะขึ้นอยู่กับข้อมูลจากช่วงเวลาเดียวกันของปีที่ผ่านมา วิธีการแบบยืดหยุ่นจะเพิ่มความสามารถในการระบุช่วงเวลาอื่นนอกเหนือจากช่วงเวลาเดียวกันของปีที่ผ่านมาเพื่อใช้เป็นเกณฑ์ในการคำนวณ คูณปัจจัย ตัวอย่างเช่นระบุ 1.15 ในตัวเลือกการประมวลผล 8b เพื่อเพิ่มข้อมูลประวัติการขายก่อนหน้านี้โดย 15. ระยะเวลาฐาน ตัวอย่างเช่น n 3 จะทำให้การคาดการณ์ครั้งแรกขึ้นอยู่กับข้อมูลการขายในเดือนตุลาคม 2548 ประวัติการขายขั้นต่ำ: ผู้ใช้ระบุจำนวนงวดย้อนกลับไปยังช่วงเวลาพื้นฐานบวกกับจำนวนช่วงเวลาที่จำเป็นสำหรับการประเมินผลการคาดการณ์ ( PBF) A.10.4 การคำนวณค่าเบี่ยงเบนสัมบูรณ์ที่ระดับความเชื่อมั่น MAD (148 - 114 161 - 119 151 - 137) 3 30 A.11 วิธีที่ 9 - ค่าเฉลี่ยถ่วงน้ำหนักวิธีการถัวเฉลี่ยถ่วงน้ำหนักเคลื่อนที่ (WMA) คล้ายกับวิธีที่ 4 ค่าเฉลี่ยเคลื่อนที่ (MA) อย่างไรก็ตามคุณสามารถกำหนดน้ำหนักการถ่วงน้ำหนักที่ไม่เท่ากันให้กับข้อมูลทางประวัติศาสตร์ได้โดยใช้ Weighted Moving Average วิธีคำนวณค่าเฉลี่ยถ่วงน้ำหนักของประวัติการขายล่าสุดเพื่อให้ได้ภาพที่ประมาณการในระยะสั้น ข้อมูลล่าสุดมักได้รับมอบหมายให้มีน้ำหนักมากกว่าข้อมูลที่เก่ากว่าดังนั้นจึงทำให้ WMA มีการตอบสนองต่อการเปลี่ยนแปลงระดับการขายมากขึ้น อย่างไรก็ตามแนวโน้มการคาดการณ์และข้อผิดพลาดอย่างเป็นระบบยังคงเกิดขึ้นเมื่อประวัติการขายของผลิตภัณฑ์แสดงแนวโน้มที่แข็งแกร่งหรือตามฤดูกาล วิธีนี้ใช้งานได้ดีกว่าสำหรับการคาดการณ์ในระยะสั้นของผลิตภัณฑ์ที่ครบกำหนดมากกว่าผลิตภัณฑ์ที่อยู่ในช่วงการเจริญเติบโตหรือเสื่อมสภาพของวงจรชีวิต n จำนวนระยะเวลาของประวัติการขายที่จะใช้ในการคำนวณคาดการณ์ ตัวอย่างเช่นระบุ n 3 ในตัวเลือกการประมวลผล 9a เพื่อใช้ช่วงเวลาสามช่วงล่าสุดเป็นเกณฑ์สำหรับการฉายในช่วงเวลาถัดไป ค่าที่มากสำหรับ n (เช่น 12) ต้องการประวัติการขายเพิ่มขึ้น ส่งผลให้มีการคาดการณ์ที่มั่นคง แต่จะช้าในการรับรู้ถึงการเปลี่ยนแปลงในระดับของยอดขาย ในทางกลับกันค่าเล็กน้อยสำหรับ n (เช่น 3) จะตอบสนองได้เร็วขึ้นเพื่อเลื่อนระดับการขาย แต่การคาดการณ์อาจผันผวนอย่างกว้างขวางเพื่อให้การผลิตไม่สามารถตอบสนองต่อรูปแบบต่างๆได้ น้ำหนักที่กำหนดให้กับแต่ละช่วงข้อมูลที่ผ่านมา น้ำหนักที่กำหนดต้องเป็น 1.00 ตัวอย่างเช่นเมื่อ n 3 ให้กำหนดน้ำหนักของ 0.6, 0.3 และ 0.1 โดยข้อมูลล่าสุดจะได้รับน้ำหนักมากที่สุด ประวัติการขายที่ต้องการขั้นต่ำ: n บวกจำนวนช่วงเวลาที่จำเป็นสำหรับการประเมินประสิทธิภาพการคาดการณ์ (PBF) MAD (133.5 - 114 121.7 - 119 118.7 - 137) 3 13.5 A.12 วิธีที่ 10 - การทำให้เรียบแบบ Linear วิธีนี้คล้ายกับวิธีที่ 9 Weighted Moving Average (WMA) อย่างไรก็ตามแทนที่จะใช้การกำหนดน้ำหนักโดยพลการให้กับข้อมูลทางประวัติศาสตร์สูตรจะใช้เพื่อกำหนดน้ำหนักที่ลดลงเป็นเชิงเส้นและรวมกันเป็น 1.00 วิธีนี้จะคำนวณถัวเฉลี่ยถ่วงน้ำหนักของประวัติการขายล่าสุดที่จะมาถึงการฉายในระยะสั้น ตามที่เป็นจริงของเทคนิคการคาดการณ์การเคลื่อนไหวเชิงเส้นทั้งหมดคาดการณ์การคาดการณ์และข้อผิดพลาดอย่างเป็นระบบเกิดขึ้นเมื่อประวัติการขายของผลิตภัณฑ์แสดงแนวโน้มที่แข็งแกร่งหรือรูปแบบตามฤดูกาล วิธีนี้ใช้งานได้ดีกว่าสำหรับการคาดการณ์ในระยะสั้นของผลิตภัณฑ์ที่ครบกำหนดมากกว่าผลิตภัณฑ์ที่อยู่ในช่วงการเจริญเติบโตหรือเสื่อมสภาพของวงจรชีวิต n จำนวนระยะเวลาของประวัติการขายที่จะใช้ในการคำนวณคาดการณ์ ซึ่งระบุไว้ในตัวเลือกการประมวลผล 10a ตัวอย่างเช่นระบุ n 3 ในตัวเลือกการประมวลผล 10b เพื่อใช้ช่วงเวลาสามครั้งล่าสุดเป็นเกณฑ์สำหรับการฉายในช่วงเวลาถัดไป ระบบจะกำหนดน้ำหนักให้กับข้อมูลทางประวัติศาสตร์ที่ลดลงโดยอัตโนมัติและรวมเป็น 1.00 ตัวอย่างเช่นเมื่อ n 3 ระบบจะกำหนดน้ำหนักของ 0.5, 0.3333 และ 0.1 โดยข้อมูลล่าสุดจะได้รับน้ำหนักมากที่สุด ประวัติการขายที่ต้องการขั้นต่ำ: n บวกจำนวนช่วงเวลาที่จำเป็นสำหรับการประเมินประสิทธิภาพการคาดการณ์ (PBF) (ตัวประมวลผล 10a) 3 ในตัวอย่างนี้อัตราส่วนสำหรับระยะเวลาหนึ่งก่อน 3 (n2 n) 2 3 (32 3) 2 36 0.5 อัตราส่วนสองช่วงก่อนหน้า 2 (n2 n ) 2 2 (32 3) 2 26 0.3333 .. อัตราส่วนสามงวดก่อน 1 (n 2 n) 2 1 (32 3) 2 16 0.1666 .. พยากรณ์มกราคม: 137 0.5 119 13 114 16 127.16 หรือ 127 การคาดการณ์เดือนกุมภาพันธ์: 127 0.5 137 13 119 16 129 การคาดการณ์ของเดือนมีนาคม: 129 0.5 127 13 137 16 129.666 หรือ 130 A.12.2 การคำนวณพยากรณ์จำลองคำนวณยอดขายในเดือนตุลาคม 2547 129 16 140 26 131 36 133.6666 พฤศจิกายน 2547 ยอดขาย 140 16 131 26 114 36 124 ธันวาคม 2547 ขาย 131 16 114 26 119 36 119.3333 A.12.3 เปอร์เซ็นต์ของการคำนวณความถูกต้อง POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.12.4 การคำนวณค่าเบี่ยงเบนสัมบูรณ์เที่ยงตรงหมายถึง MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.13 วิธีที่ 11 - วิธีการนี้มีความคล้ายคลึงกับวิธีที่ 10, Linear Smoothing ใน Linear Smoothing ระบบจะกำหนดน้ำหนักให้กับข้อมูลทางประวัติศาสตร์ที่ลดลงเป็นเส้นตรง ระบบจะกำหนดน้ำหนักที่สลายตัวแบบเลขชี้กำลัง สมการพยากรณ์ความเป็นไปได้คือ: พยากรณ์ (การขายจริงก่อนหน้านี้) (1 - a) พยากรณ์ก่อนหน้าพยากรณ์คือค่าเฉลี่ยถ่วงน้ำหนักของยอดขายจริงจากช่วงก่อนหน้าและประมาณการจากช่วงก่อนหน้า a คือน้ำหนักที่ใช้กับยอดขายที่เกิดขึ้นจริงสำหรับงวดก่อนหน้า (1 - a) คือน้ำหนักที่ใช้กับการคาดการณ์ในช่วงก่อนหน้า ค่าที่ถูกต้องสำหรับช่วงตั้งแต่ 0 ถึง 1 และโดยปกติจะอยู่ระหว่าง 0.1 ถึง 0.4 ผลรวมของน้ำหนักคือ 1.00 a (1 - a) 1 คุณควรกำหนดค่าสำหรับค่าคงที่ที่ราบเรียบ a. ถ้าคุณไม่ได้กำหนดค่าสำหรับการปรับให้ราบเรียบระบบจะคำนวณค่าที่สันนิษฐานขึ้นอยู่กับจำนวนรอบระยะเวลาของประวัติการขายที่ระบุไว้ในตัวเลือกการประมวลผล 11a ค่าคงที่ที่ราบเรียบที่ใช้ในการคำนวณค่าเฉลี่ยที่เรียบสำหรับระดับทั่วไปหรือขนาดของยอดขาย ค่าที่ถูกต้องสำหรับช่วงตั้งแต่ 0 ถึง 1 n ช่วงข้อมูลประวัติการขายที่จะรวมไว้ในการคำนวณ โดยทั่วไปหนึ่งปีของข้อมูลประวัติการขายก็เพียงพอที่จะประมาณยอดขายโดยทั่วไป สำหรับตัวอย่างนี้ได้เลือกค่าเล็กน้อยสำหรับ n (n 3) เพื่อลดการคำนวณด้วยตนเองที่จำเป็นสำหรับการตรวจสอบผล การทำให้เรียบแบบเสี้ยว (Exponential smoothing) สามารถสร้างการคาดการณ์โดยอิงตามจุดข้อมูลทางประวัติศาสตร์เพียงอย่างเดียว ประวัติการขายที่ต้องการขั้นต่ำ: n บวกจำนวนช่วงเวลาที่จำเป็นสำหรับการประเมินประสิทธิภาพการคาดการณ์ (PBF) (ตัวประมวลผล 11a) 3 และปัจจัยอัลฟา (ตัวเลือกการประมวลผล 11b) ว่างไว้ในตัวอย่างนี้เป็นปัจจัยสำหรับข้อมูลการขายที่เก่าแก่ที่สุด 2 (11) หรือ 1 เมื่อระบุ alpha เป็นปัจจัยสำหรับ 2 ข้อมูลการขายที่เก่าแก่ที่สุด 2 (12) หรืออัลฟาเมื่อ alpha ระบุปัจจัยสำหรับข้อมูลการขายที่เก่าแก่ที่สุดอันดับที่ 3 3 หรือ alpha เมื่อ alpha ระบุปัจจัยสำหรับข้อมูลการขายล่าสุด 2 (1n) หรือ alpha เมื่อระบุ alpha พฤศจิกายน Sm เฉลี่ย a (เดือนตุลาคมที่เกิดขึ้นจริง) (1 - a) October Sm. เฉลี่ย 1 114 0 0 114 ธันวาคม Sm. เฉลี่ย a (November Actual) (1 - a) พฤศจิกายน Sm. เฉลี่ย 23 119 13 114 117.3333 มกราคมคาดการณ์ (ธันวาคมจริง) (1 - ก) ธันวาคม Sm เฉลี่ย 24 137 24 117.3333 127.16665 หรือ 127 February Forecast มกราคม Forecast 127 March Forecast มกราคม Forecast 127 A.13.2 การคำนวณพยากรณ์แบบจำลองกรกฎาคม 2547 Sm เฉลี่ย 22 129 129 สิงหาคม Sm. เฉลี่ย 23 140 13 129 136.3333 กันยายนกันยายน เฉลี่ย 24 131 24 136.3333 133.6666 ตุลาคม 2547 ยอดขายกันยายนกันยายนศ. เฉลี่ย 133.6666 สิงหาคม, 2547 Sm. เฉลี่ย 22 140 140 กันยายนกันยายน เฉลี่ย 23 131 13 140 134 ตุลาคม Sm. เฉลี่ย 24 114 24 134 124 พฤศจิกายน 2547 ขายกันยายนกันยายน เฉลี่ย 124 กันยายน 2547 Sm. เฉลี่ย 22 131 131 ตุลาคม Sm. เฉลี่ย 23 114 13 131 119.6666 พฤศจิกายนศ. เฉลี่ย 24 119 24 119.6666 119.3333 ยอดขายธันวาคม 2547 ก. ย. Sm. เฉลี่ย 119.3333 A.13.3 ร้อยละของการคำนวณความถูกต้อง POA (133.6666 124 119.3333) (114 119 137) 100 101.891 A.13.4 การคำนวณค่าเบี่ยงเบนสัมบูรณ์ที่มีค่าเฉลี่ย MAD (133.6666 - 114 124 - 119 119.3333 - 137) 3 14.1111 A.14 วิธีที่ 12 - การจัดแจงแบบเสียดสี (Exponential Smoothing) ด้วยเทรนด์และฤดูกาลวิธีนี้คล้ายคลึงกับวิธีที่ 11 Exponential Smoothing ที่คำนวณค่าเฉลี่ยที่ราบเรียบ อย่างไรก็ตามวิธีที่ 12 รวมถึงคำในสมการพยากรณ์เพื่อคำนวณแนวโน้มที่ราบรื่น การคาดการณ์ประกอบด้วยการปรับค่าเฉลี่ยที่ราบเรียบสำหรับแนวโน้มเชิงเส้น เมื่อระบุไว้ในตัวเลือกการประมวลผลการคาดการณ์จะได้รับการปรับตามฤดูกาลด้วยเช่นกัน ค่าคงที่ที่ราบเรียบที่ใช้ในการคำนวณค่าเฉลี่ยที่เรียบสำหรับระดับทั่วไปหรือขนาดของยอดขาย ค่าที่ถูกต้องสำหรับ alpha มีตั้งแต่ 0 ถึง 1 b ค่าคงที่ที่ราบเรียบที่ใช้ในการคำนวณค่าเฉลี่ยที่ราบเรียบสำหรับส่วนประกอบแนวโน้มของการคาดการณ์ ค่าที่ถูกต้องสำหรับช่วงเบต้าตั้งแต่ 0 ถึง 1 ไม่ว่าจะมีการใช้ดัชนีตามฤดูกาลกับการคาดการณ์ a และ b จะไม่ขึ้นกับแต่ละอื่น ๆ พวกเขาไม่ต้องเพิ่มเป็น 1.0 ประวัติการขายที่ต้องการขั้นต่ำ: สองปีบวกระยะเวลาที่จำเป็นสำหรับการประเมินประสิทธิภาพการคาดการณ์ (PBF) วิธีที่ 12 ใช้สมการราบเรียบแบบเอ็กซเรนแนนเชียลและค่าเฉลี่ยที่เรียบง่ายเพียงอย่างเดียวในการคำนวณหาค่าเฉลี่ยที่ราบเรียบแนวโน้มที่เรียบและค่าเฉลี่ยตามฤดูกาลที่เรียบง่าย A.14.1 การคำนวณพยากรณ์ A) ค่าเฉลี่ย MAD แบบเรียบ (122.81 - 114 133.14 - 119 135.33 - 137) 3 8.2 A.15 การประเมินการคาดการณ์คุณสามารถเลือกวิธีคาดการณ์เพื่อสร้างการคาดการณ์ได้ถึงสิบสองครั้งสำหรับแต่ละผลิตภัณฑ์ วิธีการคาดการณ์แต่ละวิธีอาจสร้างการฉายภาพที่แตกต่างกันเล็กน้อย เมื่อมีการคาดการณ์ผลิตภัณฑ์หลายพันรายการจะไม่เป็นไปได้ในการตัดสินใจอย่างเป็นอัตนัยเกี่ยวกับการคาดการณ์ใดในแผนงานของคุณสำหรับแต่ละผลิตภัณฑ์ ระบบจะประเมินประสิทธิภาพโดยอัตโนมัติสำหรับแต่ละวิธีคาดการณ์ที่คุณเลือกและสำหรับแต่ละผลิตภัณฑ์คาดการณ์ คุณสามารถเลือกระหว่างสองเกณฑ์ประสิทธิภาพ ได้แก่ Mean Absolute Deviation (MAD) และเปอร์เซ็นต์ความถูกต้อง (POA) MAD เป็นตัวชี้วัดข้อผิดพลาดในการคาดการณ์ POA เป็นตัววัดความลำเอียงของการคาดการณ์ เทคนิคการประเมินประสิทธิภาพทั้งสองแบบนี้ต้องการข้อมูลประวัติการขายที่แท้จริงสำหรับผู้ใช้ตามช่วงเวลาที่กำหนด ช่วงเวลาของประวัติล่าสุดนี้เรียกว่าระยะเวลาการระงับหรือช่วงเวลาที่เหมาะสม (PBF) หากต้องการวัดประสิทธิภาพของวิธีการคาดการณ์ให้ใช้สูตรคาดการณ์เพื่อจำลองการคาดการณ์สำหรับระยะเวลาการระงับชั่วคราวในอดีต โดยทั่วไปจะมีความแตกต่างระหว่างข้อมูลการขายที่เกิดขึ้นจริงกับการคาดการณ์แบบจำลองสำหรับระยะเวลาการระงับ เมื่อเลือกวิธีคาดการณ์หลายวิธีกระบวนการเดียวกันนี้จะเกิดขึ้นกับแต่ละวิธี คาดการณ์หลายรายการสำหรับระยะเวลาการระงับและเปรียบเทียบกับประวัติการขายที่รู้จักกันในช่วงเวลาเดียวกัน แนะนำให้ใช้วิธีการคาดการณ์ที่เหมาะสมที่สุดในการคาดการณ์และยอดขายจริงในช่วงระยะเวลาการระงับชั่วคราวเพื่อใช้ในแผนงานของคุณ ข้อเสนอแนะนี้มีไว้สำหรับแต่ละผลิตภัณฑ์โดยเฉพาะและอาจเปลี่ยนจากการคาดการณ์หนึ่งไปเป็นอีกรุ่นหนึ่ง A.16 ค่าเบี่ยงเบนสัมบูรณ์ (MAD) หมายถึงค่าเฉลี่ย (หรือค่าเฉลี่ย) ของค่าสัมบูรณ์ (หรือขนาด) ของความเบี่ยงเบน (หรือข้อผิดพลาด) ระหว่างข้อมูลจริงและข้อมูลที่คาดการณ์ MAD เป็นมาตรวัดขนาดเฉลี่ยของข้อผิดพลาดที่คาดว่าจะได้รับตามวิธีการคาดการณ์และประวัติข้อมูล เนื่องจากค่าสัมบูรณ์ถูกนำมาใช้ในการคำนวณข้อผิดพลาดในเชิงบวกไม่ได้เป็นการยกเลิกข้อผิดพลาดเชิงลบ เมื่อเปรียบเทียบวิธีการคาดการณ์หลายวิธีหนึ่งกับ MAD ที่เล็กที่สุดแสดงให้เห็นว่าน่าเชื่อถือที่สุดสำหรับผลิตภัณฑ์ดังกล่าวในช่วงที่มีการระงับ เมื่อมีการคาดการณ์ที่ไม่เป็นกลางและมีข้อผิดพลาดเกิดขึ้นตามปกติมีความสัมพันธ์ทางคณิตศาสตร์ที่เรียบง่ายระหว่าง MAD และสองค่านิยมทั่วไปของการแจกแจงส่วนเบี่ยงเบนมาตรฐานและ Mean Squared Error: A.16.1 เปอร์เซ็นต์ความถูกต้อง (POA) เปอร์เซ็นต์ความถูกต้อง (POA) คือ วัดความลำเอียงคาดการณ์ เมื่อการคาดการณ์สูงเกินไปอย่างต่อเนื่องสินค้าคงเหลือสะสมและต้นทุนสินค้าคงคลังเพิ่มขึ้น เมื่อการคาดการณ์เป็นไปอย่างต่อเนื่องสองขั้นต่ำสินค้าคงเหลือถูกบริโภคและการบริการลูกค้าลดลง การคาดการณ์ที่ต่ำกว่า 10 หน่วยจากนั้น 8 หน่วยที่สูงเกินไปจากนั้น 2 หน่วยที่สูงเกินไปจะเป็นการคาดการณ์ที่เป็นกลาง ข้อผิดพลาดในเชิงบวกที่ 10 จะถูกยกเลิกโดยข้อผิดพลาดเชิงลบที่ 8 และ 2 ข้อผิดพลาดที่เกิดขึ้นจริง - พยากรณ์เมื่อผลิตภัณฑ์สามารถเก็บไว้ในสินค้าคงคลังและเมื่อการคาดการณ์เป็นกลางจำนวนหุ้นที่ปลอดภัยสามารถนำมาใช้เพื่อป้องกันข้อผิดพลาดได้ ในสถานการณ์เช่นนี้การกำจัดข้อผิดพลาดในการคาดการณ์ไม่ได้เป็นเรื่องสำคัญเท่าที่ควรในการคาดการณ์ที่เป็นกลาง อย่างไรก็ตามในอุตสาหกรรมบริการสถานการณ์ข้างต้นจะถือเป็นข้อผิดพลาดสามประการ บริการนี้จะขาดแคลนในช่วงเวลาแรกและมีเวลาเกินกว่าสองช่วงเวลา ในการให้บริการขนาดของข้อผิดพลาดในการคาดการณ์มักจะมีความสำคัญมากกว่าการคาดการณ์ ยอดรวมในช่วงการระงับช่วยให้ข้อผิดพลาดในเชิงบวกสามารถยกเลิกข้อผิดพลาดเชิงลบได้ เมื่อยอดขายรวมที่เกิดขึ้นจริงสูงกว่ายอดขายที่คาดการณ์ไว้อัตราส่วนดังกล่าวมีค่ามากกว่า 100 แน่นอนว่าเป็นไปไม่ได้ที่จะมีความแม่นยำมากกว่า 100 เมื่อการคาดการณ์ไม่เป็นกลางอัตราส่วน POA จะเท่ากับ 100 ดังนั้นจึงเป็นที่น่าพอใจมากขึ้นกว่าที่จะเป็น 95 ถูกต้องแม่นยำกว่าที่ถูกต้อง 110 เกณฑ์ POA เลือกวิธีการคาดการณ์ที่มีอัตราส่วน POA ใกล้เคียงกับ 100 การเขียนสคริปต์ในหน้านี้ช่วยเพิ่มการนำทางเนื้อหา แต่ไม่เปลี่ยนเนื้อหาในลักษณะใด ๆ
No comments:
Post a Comment